Distributed Sagas with
AWS Step Functions

#i
Melvin Jones https://github.com/mjones3

' ﬁ/ Solutions Architect



What you'll learn

01 . Why sagas solve consistency in
microservices

02 ., How to orchestrate with Step
Functions & Spring Boot

03 . Implementing compensations
and error flows




Motivation & Concepts

Understand the limits of two-phase commits

01. Single Point of Failure:
The coordinator in a two-phase commit (2PC) can become
a bottleneck, making the system vulnerable if it fails.

02. Blocking:
If a participant in the commit process crashes, it can block
other participants, leading to delays.

03. Scalability Issues:
Two-phase commit is not well-suited for large-scale
distributed systems, as it requires synchronous
communication between all participants



What is the Saga pattern?

(Choreography vs Orchestration)

The Saga Pattern manages long-running, c

istributed

transactions by splitting them into smalle
with compensations for failures.

, Isolated steps

- Choreography: Each service independently handles
its part and triggers the next service without a

central coordinator.

« Orchestration: A central service controls the flow of

the saga and coordinates the actions of

each service.



Real-world scenario:
Order = Inventory = Payment

O1. Order: The customer places an order, triggering the
Order Service to create a new order in the system.

02. Inventory: The Inventory Service checks stock levels,
reserves the items, and updates inventory to reflect
the order.

03. Payment: The Payment Service processes the
payment; if successful, the order is confirmed and
finalized.



Failure Scenario (Compensations)

If the Inventory Service fails, the Order Service will
cancel the order

It the Payment Service fails, the Inventory Service will
roll back the stock reservation and the Order Service
will cancel the order



Microservice isolation &
independent data stores

Microservice Isolation:
Each microservice handles a single domain, ensuring
clear separation and scalability

Independent Data Stores:
Each service owns its own data store, promoting
decoupling and independent evolution.



System Architecture

Users

Computer

AWS Cloud

Amazon API
Gateway

AWS Step Functions workflow

[

Sl Virtual private cloud (VPC)

Public subnet

Private subnet

(&2

Check

Application Load

Inventory

Balancer

Py
|

(&

Accept

Release
Inventory

Cancel
Order

Application Load
Balancer

—(&a

Application Load
Balancer

-

Inventory Service

OrderDB

8

InventoryDB

PaymentDB




Building the Spring Boot
Microservices

01.  Create Order, Inventory, Payment
services with JPA & REST

02. Expose compensation
endpoints (/cancel, /release)




Code snippets for
@RestController mapping

@PostMapping("/orders/create®)
public ResponseEntity<0OrderResponse> createlrder(@RequestBody OrderRequest reg) 1

logger.info(req);

Order order = orderService.create0Order(req);
OrderResponse response = new OrderResponse(order);

logger.info(response);

return new ResponseEntity<>(response, HttpStatus.CREATED);



Code snippets for
@RestController mapping

@PostMapping("/orders/{id}/cancel")
public ResponseEntity<0Order> cancelOrder(@PathVariable("id") Long orderId) {

Optional<Order> order = orderService.cancelOrder({orderId);
if (order.isPresent()) {

return new ResponseEntity<>(order.get(), HttpStatus.O0K);
} else {

return new ResponseEntitye>(HttpStatus.NOT_FOUND] ;
¥



Defining the State Machine

01. Author Amazon States Language
(ASL) JSON

02. Use Choice states for business
results




Amazon States Language
(ASL) JSON

1
"Comment": "State machine for processing the order saga with Choice states”,
"StartAt": "OrderService",
"States": {
"OrderService": {
IIT.FPEII= IITHEkII‘
"Resource": "arn:aws:states:::lambda:invoke",
"Parameters": {
"FunctionName": "${aws_lambda_function.order_service.arn}",
"Payload": { "input.s": "§" }
Ty
"Catch": [
1
“"ErrorEquals": ["States.ALL"],
"Next": "FailSaga"

: "InventoryService"




State Machine Diagram 4 @ A

{ OrderService L\

InventoryService ‘

VN

CheckInventory

PaymentService ‘

Yl N

: CheckPayment |
Y
‘ Releaselnventory 1

CancelOrder ‘
- " ¥ ‘/
‘ CompleteSaga FailSaga

5 y




Compensation & Error Handling

01. Implement compensating actions in
microservices

02. Catch unexpected Lambda errors




Order POST /cancel example

Checkinventory choice transitions to CancelOrder if
InventoryService returns a 404

"CheckInventory": {
“"Type": "Choice",
“Choices": [
1
“"Variable": "%.Payload.statusCode",
“NumericEquals": 484,
"Next": "CancelOrder"
}
I
“Default": "PaymentService"

Fy



Inventory POST /release example

CheckPayment Choice state transitions to
Releaselnventory it 402 is received from PaymentService

"CheckPayment": {
"Type": "Cholce",
"Choices": [
{
"Variable": "4$.Payload.statusCode",
"MumericEquals": 482,
"Next": "ReleaseInventory”
¥
I
"Default": "CompleteSaga"
i




Inventory Service: POST /release example

Release inventory compensation

{
"orderId": 5,
"items": [

"orderItemId": 9,
“productId": "AB@8a3",
“"releaseQuantity": 2

"orderItemId": 1@,
"productId": "AD@ea4d",
“"releaseQuantity”: 2




Order Service: POST /cancel example

Cancel order compensation

1

"orderId": 5

¥



Step Function Flow:
Approved Payment




Step Function Flow:
Insufficient Inventory

i
I
I
I
.I

— e \ .

i Rﬁlﬂmmvel_jmr}r E

CheckPayment




Step Function Flow:
Failed Payment




X-Ray Tracing

Client

avg. 359 ms SR L |
0.07 /min 0.07 fmim

O candelOrderFunctio
mbda Context

aymentServiceFunction
Lambda Function

O paymentServiceFunction O cancelOrderFunction
Lambda Context Lambda Function
= avn. 2.97 = __é;ﬂﬂms o g 137 ms

0.07 /min g 0.07 imin

()

O OrderSagaStateMachine
StepFuncti...tateMachine

O inventoryServiceFunction O inventoryServiceFunction
Lambda Context Lambda Function

avg. 105 ms
nmj'mh

0

\

\ O arderServiceFunction O arderServiceFunction
Lambda Context Lambda Function

avg. T08 ms
0.07 fmin

0

2 releasalnventoryFunction O releaselnventoryFunction
Lambda Context Lambda Function



Key Takeaways

01. Sagas for data consistency without locks

02. Clear separation: Choice for business, Catch for
errors

03. Two terminal states: Succeed vs Fail




Dos & Don’ts:

01. Do use idempotent compensations

02. Don't use exceptions for expected flows




Further reading

Designing
Data-Intensive
Applications

THE BIG IDEAS BEHIND RELIABLE, SCALABLE,
AND MAINTAINABLE SYSTEMS

Designing Data-Intensive Applications
Martin Kleppmann

Martin Kleppmann




O https://qgithub.com/mjones3/order-system
GitHub


https://github.com/mjones3/order-system

