
Distributed Sagas with

AWS Step Functions

Melvin Jones
Solutions Architect

https://github.com/mjones3

What you’ll learn

01.

02.

Why sagas solve consistency in
microservices

How to orchestrate with Step
Functions & Spring Boot

03. Implementing compensations
and error flows

Single Point of Failure:
The coordinator in a two-phase commit (2PC) can become
a bottleneck, making the system vulnerable if it fails.

Understand the limits of two-phase commits

Motivation & Concepts

Blocking:
 If a participant in the commit process crashes, it can block
other participants, leading to delays.

Scalability Issues:
Two-phase commit is not well-suited for large-scale
distributed systems, as it requires synchronous
communication between all participants

01.

02.

03.

Choreography: Each service independently handles
its part and triggers the next service without a
central coordinator.

Orchestration: A central service controls the flow of
the saga and coordinates the actions of each service.

What is the Saga pattern?

(Choreography vs Orchestration)

The Saga Pattern manages long-running, distributed

transactions by splitting them into smaller, isolated steps

with compensations for failures.

Order: The customer places an order, triggering the
Order Service to create a new order in the system.

Real-world scenario:

Order → Inventory → Payment

Inventory: The Inventory Service checks stock levels,
reserves the items, and updates inventory to reflect
the order.

Payment: The Payment Service processes the
payment; if successful, the order is confirmed and
finalized.

01.

02.

03.

If the Inventory Service fails, the Order Service will
cancel the order

Failure Scenario (Compensations)

If the Payment Service fails, the Inventory Service will
roll back the stock reservation and the Order Service
will cancel the order

Microservice Isolation:
Each microservice handles a single domain, ensuring
clear separation and scalability

Microservice isolation &

independent data stores

Independent Data Stores:
Each service owns its own data store, promoting
decoupling and independent evolution.

System Architecture

Building the Spring Boot
Microservices

01.

02.

Create Order, Inventory, Payment
services with JPA & REST

Expose compensation
endpoints (/cancel, /release)

Code snippets for
@RestController mapping

Code snippets for
@RestController mapping

01.

02.

Author Amazon States Language
(ASL) JSON

Use Choice states for business
results

Defining the State Machine

Amazon States Language
(ASL) JSON

State Machine Diagram

01.

02.

Implement compensating actions in
microservices

Catch unexpected Lambda errors

Compensation & Error Handling

Order POST /cancel example

CheckInventory choice transitions to CancelOrder if
InventoryService returns a 404

Inventory POST /release example

CheckPayment Choice state transitions to

ReleaseInventory if 402 is received from PaymentService

Inventory Service: POST /release example

Release inventory compensation

Order Service: POST /cancel example

Cancel order compensation

Step Function Flow:
Approved Payment

Step Function Flow:
Insufficient Inventory

Step Function Flow:
Failed Payment

X-Ray Tracing

Sagas for data consistency without locks

Key Takeaways

Clear separation: Choice for business, Catch for
errors

Two terminal states: Succeed vs Fail

01.

02.

03.

Do use idempotent compensations

Dos & Don’ts:

Don’t use exceptions for expected flows

01.

02.

Designing Data-Intensive Applications
(Martin Kleppmann)

Further reading

Download Source

https://github.com/mjones3/order-system

https://github.com/mjones3/order-system

